Introduction to Data Science

Introduction to Data Science

Course Outlines

MODULE I:

FUNDAMENTAL SKILLS FOR DATASCIENCE – 20 HOURS

• Introduction to Python eco system

• Python Programing

• Python Libraries (Numpy, PANDAS, Matplotlib,
Scikit Learn)

• Linear Algebra using Python (03 Hours)

• Probability & Statistics using Python

• Data Cleaning & Wrangling using PANDAS

• Data Visualization

MODULE II:

MACHINE LEARNING TECHNIQUES
20 HOURS


• Data Preprocessing

• Supervised/Unsupervised Learning

• Linear/Logistic Regression

• Data Prediction

• ARIMA for Prediction

• Data Classification

• Support Vector Machines (SVM)

• Artificial Neural Networks (ANN)

• Convolutional Neural Networks (CNN)

• Recurrent Neural Networks (LSTM/GRU)

MODULE III:
USE CASES (APPLICATIONS)
20 HOURS

• Data Preprocessing

• Supervised/Unsupervised Learning

• Linear/Logistic Regression

• Data Prediction

• ARIMA for Prediction

• Data Classification

• Support Vector Machines (SVM)

• Artificial Neural Networks (ANN)

• Convolutional Neural Networks (CNN)

• Recurrent Neural Networks (LSTM/GRU)

APPLY NOW